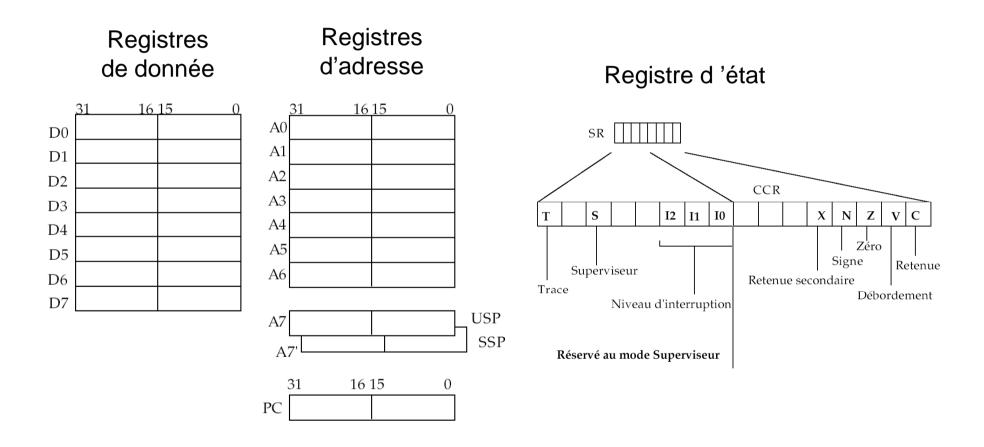
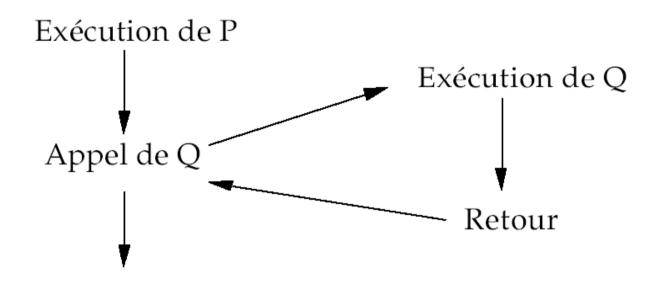

Mécanismes d'exécution

Du séquentiel au parallèle


Mémoire et Processeur

Modèle d'exécution



Exemple: le Motorola 68000

L'ensemble des valeurs des registres pour un processus donné est appelé le **contexte** du processus.

Appel et retour de procédure

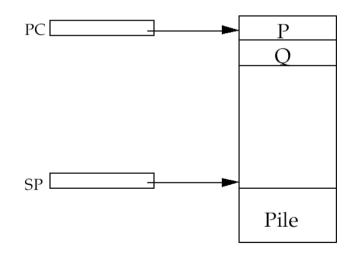
Séquence d'appel

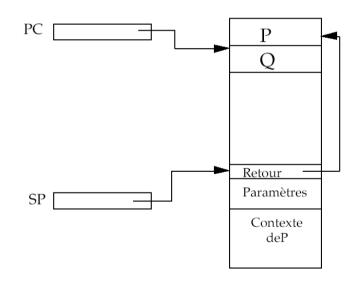
Préparation des paramètres transmis à Q

Sauvegarde du contexte de P

Remplacement du contexte de P par le contexte de Q

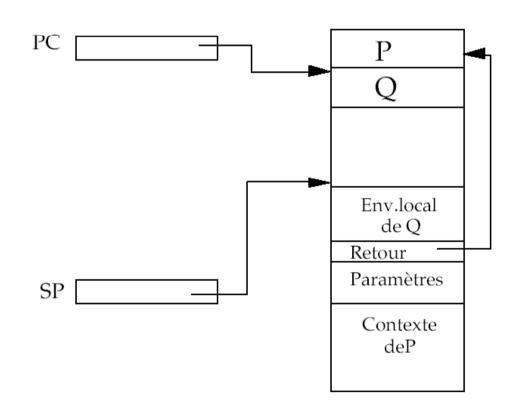
Retour

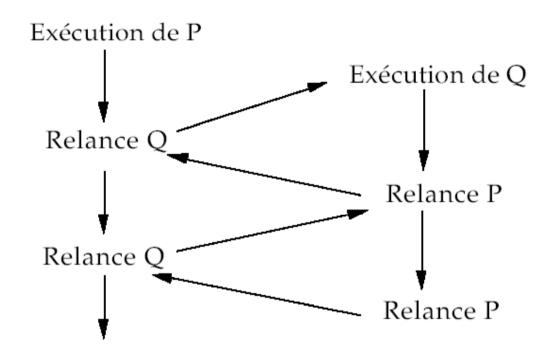

Préparation des résultats transmis par Q


Restauration du contexte de P avant l'appel

Réalisation avec une pile

État avant l'appel


P: Préparation des paramètres et commutation



Réalisation avec une pile

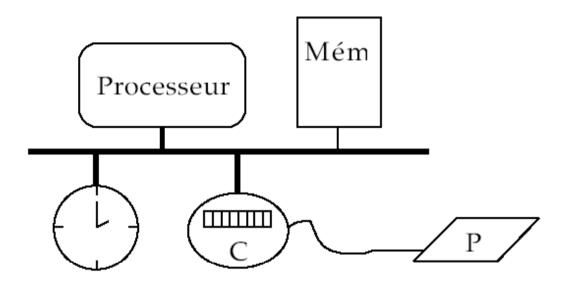
Q : préparation de l'environnement local

Fonctionnement en co-routines

Relance (Resume) = Séquence d'appel

Préparation des paramètres transmis

Sauvegarde du contexte courant


Remplacement de l'ancien contexte par le nouveau

Réalisations

Avec une pile?

Avec contexte global

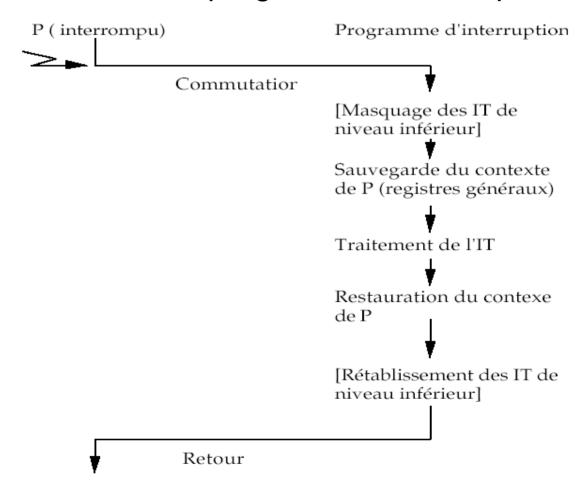
Activités synchrones

Entrées/Sorties par canal, Horloge, Intervention externe, Traitement d'erreur

Nécessité de pouvoir interrompre le processeur

Activités synchrones

Mécanismes d'exception


Mécanisme	Cause	Utilisation
Interruption	Extérieure à l'instruction en cours	Réaction à un évenement externe (E/S, horloge, sécurité)
Déroutement	Déclenché par l'instruction en cours	Traitement d'erreurs (débordement, division par 0, instruction illégale)
Appel au superviseur	Exception voulue, programmée	Appel d'une fonction du système d'exploitation (passage en mode privilégié)

Commutation de contexte

- Principe
 - Sauvegarde du mot d'état du programme et des registres
 - Chargement d'un mot d'état et de registres à partir d'un emplacement spécifié
- 2 méthodes pour la sauvegarde
 - Emplacements fixes
 - Pile

Interruptions

- En général plusieurs niveaux (priorités)
- Masquables (armement, désarmement)
- Schéma d'un programme d'interruption :

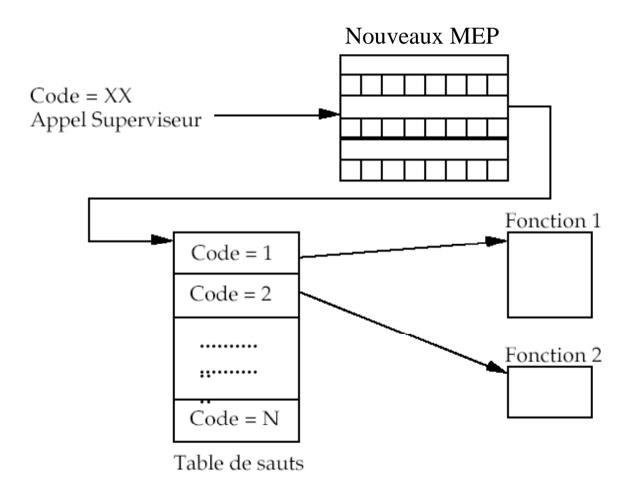
Déroutements et appels au superviseur

Déroutements

Données incorrectes (débordement, division par 0)

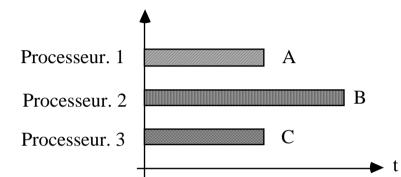
Violation de protection (de la mémoire, du mode privilégié)

Instruction non-exécutable (code inconnu, erreur d'adresse,...)

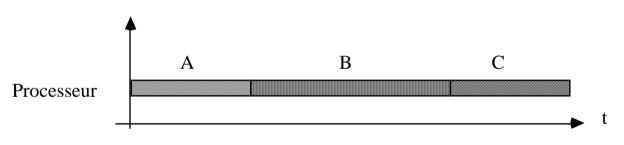

Appels au superviseur

Comme un appel de procédure mais avec des droits étendus (mode privilégié, IT masquées, droits d'accès)

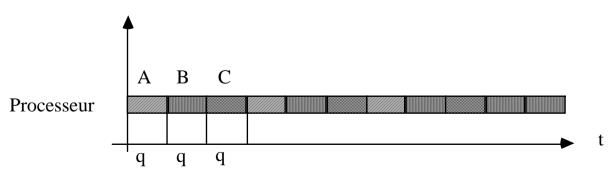
Appel aux fonctions du système


Déroutements et appels au superviseur

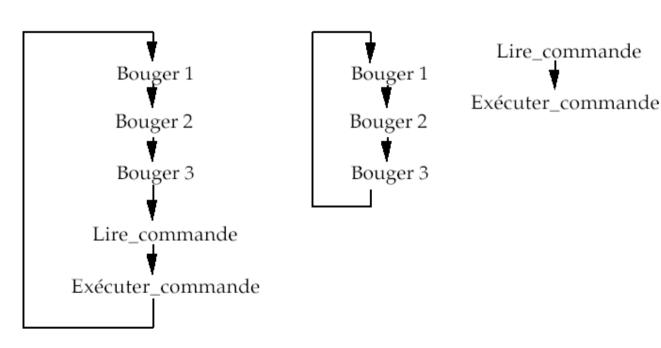
Appel aux fonctions du système



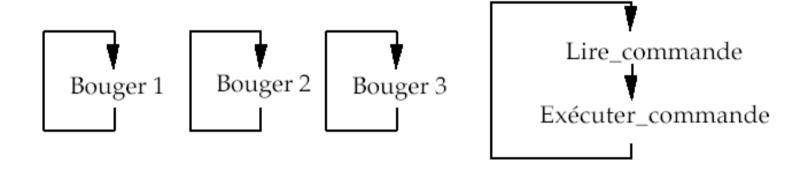
Le Multitâches


Système multiprocesseurs

Système
 Monoprocesseur,
 monotâche

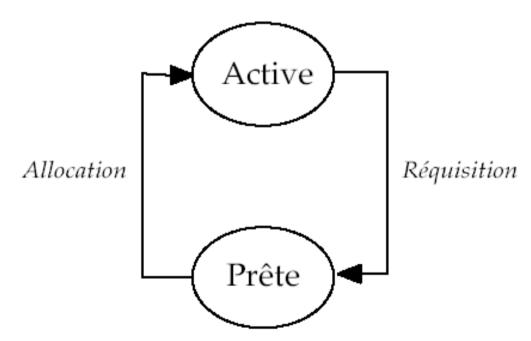

Système
 Monoprocesseur,
 multi-tâches

Exemples : jeux vidéos

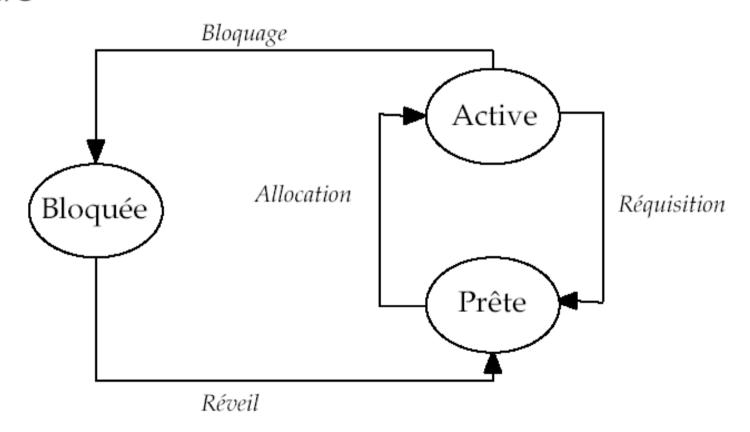

Monotâche avec interruptions

Monotâche tâche principale/interruptions

Exemples : jeux vidéos


Multi-tâches

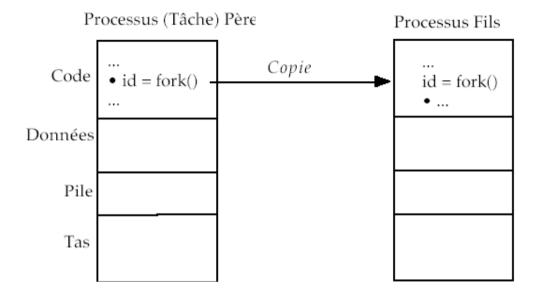
Souplesse
Partage du code

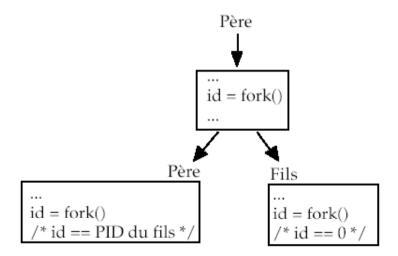

États d'une tâche

Contexte mono-processeur : une tâche active à la fois

États d'une tâche

Mais une tâche peut être bloquée en attente d'une E/S


Création d'une tâche


Création dynamique (Unix, OS/2, ADA, ...)

Une tâche est toujours créée par une autre tâche

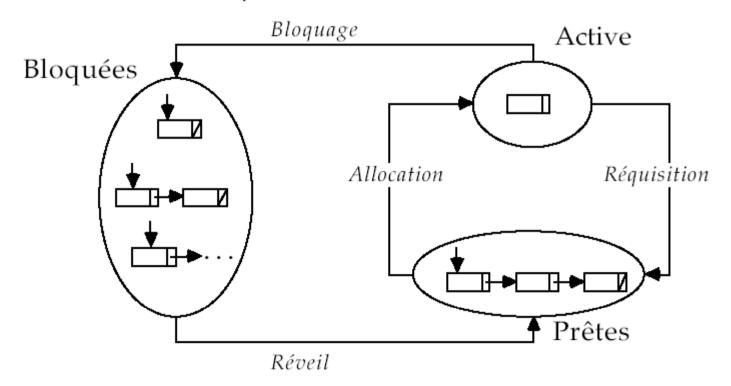
- Par copie
- Par chargement depuis un support

Exemple d'Unix

Exemple de programme C avec fork

```
* Schéma de création de processus.
 * Création d'un processus fils et test pour exécuter un code différent
 * dans le père et dans le fils.
                           /* Pour perror */
#include <stdio.h>
#include <stdlib.h>
                           /* Pour exit */
#include <unistd.h> /* Pour fork, getpid, getppid, sleep */
#include <sys/types.h>
                                      /* Pour pid t (fork, getpid, getppid)
#include <svs/wait.h>
                                     /* Pour wait */
int main(void)
 pid t ident;
  ident = fork();
  if (ident == -1)
   perror("fork");
   return EXIT FAILURE;
  /* A partir de cette ligne, il y deux processus */
 printf("Cette ligne sera affichée deux fois\n");
  if (ident == 0)
   /* Code exécuté uniquement par le fils */
   printf("Je suis le fils\n");
  else
   /* Code exécuté uniquement par le pere */
   printf("Je suis le père\n");
  return EXIT_SUCCESS;
```

Exemple de programme C avec fork


```
* Schéma de création de processus.
 * Création d'un processus fils et test pour exécuter un code différent
 * dans le père et dans le fils.
 * /
#include <stdio.h>
                                 /* Pour perror */
#include <stdlib.h>
                                 /* Pour exit */
                                 /* Pour fork, getpid, getppid, sleep */
#include <unistd.h>
                           /* Pour pid_t (fork, getpid, getppid) */
#include <sys/types.h>
#include <sys/wait.h>
                                 /* Pour wait */
int main(void)
 pid t ident;
  ident = fork();
  if (ident == -1)
   perror("fork");
   return EXIT FAILURE;
  /* A partir de cette ligne, il y deux processus */
  printf("Cette ligne sera affichée deux fois\n");
  if (ident == 0)
    /* Code exécuté uniquement par le fils */
    sleep(2); /* le fils dort pendant 2 secondes */
    printf("Je suis le fils\n");
  else
    /* Code exécuté uniquement par le pere */
   printf("Je suis le père\n");
  return EXIT_SUCCESS;
```

Exemple de programme C avec fork

```
* Schéma de création de processus.
 * Création d'un processus fils et test pour exécuter un code différent
 * dans le père et dans le fils.
 * /
#include <stdio.h>
                                 /* Pour perror */
#include <stdlib.h>
                                 /* Pour exit */
#include <unistd.h>
                                 /* Pour fork, getpid, getppid, sleep */
                            /* Pour pid_t (fork, getpid, getppid) */
#include <sys/types.h>
#include <sys/wait.h>
                                 /* Pour wait */
int main(void)
 pid t ident;
  ident = fork();
  if (ident == -1)
   perror("fork");
   return EXIT FAILURE;
  /* A partir de cette ligne, il y deux processus */
  printf("Cette ligne sera affichée deux fois\n");
  if (ident == 0)
    /* Code exécuté uniquement par le fils */
    sleep(2); /* le fils dort pendant 2 secondes */
    printf("Je suis le fils\n");
  else
    /* Code exécuté uniquement par le pere */
   wait(NULL); /* le père attend la fin de l'un de ses fils */
    printf("Je suis le père\n");
  return EXIT SUCCESS;
```

Gestion du processeur

États d'une tâche, Files d'attente

Gestion du processeur

Ordonnanceur (scheduler)

Ensemble des algorithmes utilisés pour faire les transitions entre tâches.

Distributeur (dispatcher)

Plus particulièrement chargé de l'allocation.

Politique (ou stratégie) d'ordonnancement

Préemptif ou non préemptif

Lié à la gestion des files d'attente

Stratégies d'ordonnancement

Temps partagé	Temps réel
Rendre le système agréable à utiliser :	Le système doit être efficace et sûr :
tâches interactives	hiérarchie de tâches (priorités)
 algorithmes complexes, avec vieillisement des priorités, régulation de la charge 	 souplesse (adaptation à de nombreuses applications, même très contraintes)

Non préemptif	Préemptif
Exécution de la tâche courante jusqu'à appel du noyau ou interruption externe	La tâche est de toute façon interrompue en fin de quantum
Le noyau décide ou non de commuter la tâche active	Commutation en fonction des priorités
≁ Facile à réaliser	♣ Plus difficile à réaliser
❖ Peu fiable	✓ Plus fiable
	✓ Meilleure prise en compte des tâches prioritaires
Très bon rendement	Rendement affaibli

Temps de latence aux interruptions

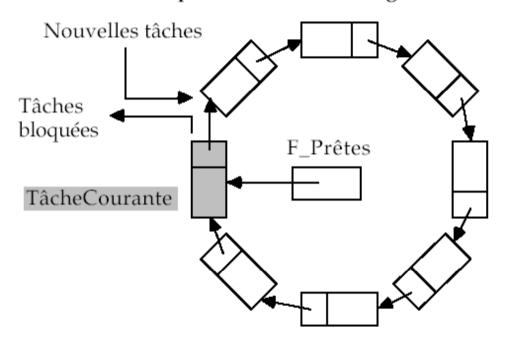
Durée maximum pendant laquelle les interruptions sont masquées. Critère important des applications temps réel à cause des tâches de sécurité.

Unix : temps de commutation ± 1ms, temps de latence non précisé

Noyau temps réel : temps de commutation 40 à 250 µs, temps de latence inférieur à 100µs

Critères de qualité de l'ordonnancement

Efficacité/Rendement : le maximum de temps doit être consaré à l'application

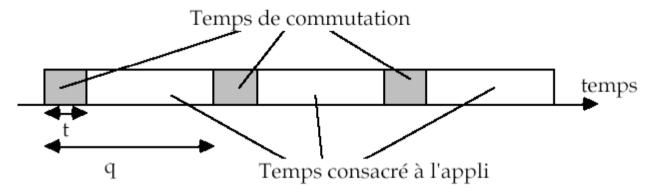

Temps de réponse : le plus faible possible (lié au temps de latence)

Impartialité : partage équitable entre tâches

Débit : le plus de tâches possibles dans un temps donné

Tourniquet : ordonnancement circulaire sans priorité

La file des tâches prêtes est circulaire et gérée en FIFO.



Sans réquisition : très efficace s'il y a peu de tâches qui se bloquent souvent (E/S)

Avec réquisition : c'est une méthode impartiale pour les tâches de même priorité.

Tourniquet : choix du quantum

Compromis entre débit et efficacité

Efficacité
$$E = \frac{q - t}{q} = \text{rapport } \frac{\text{temps consacré à l'appli}}{\text{temps total}}$$

Exemple : t = 1ms

$$E = 0.8 \text{ si } q = 5 \text{ms}$$

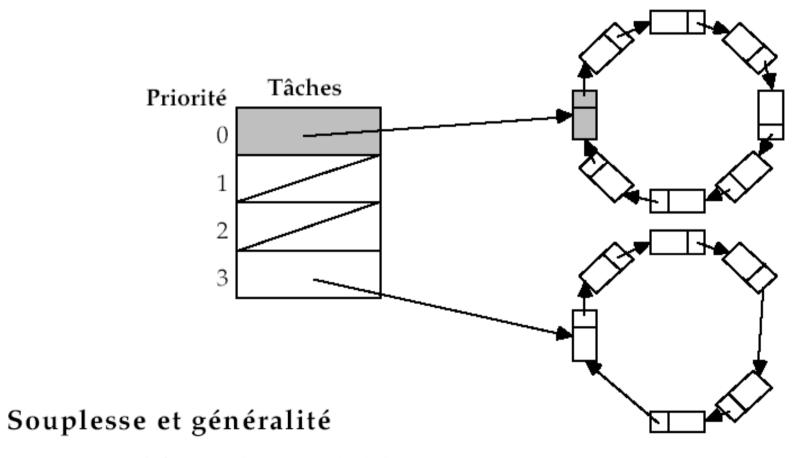
$$E = 0.98 \text{ si } q = 50 \text{ms}$$

$$D\acute{e}bit D = \frac{1}{q}$$
 = nombres de tâches traitées par seconde

Exemple:

$$D = 200 \text{ si } q = 5 \text{ms}$$

$$D = 20 \text{ si } q = 50 \text{ms}$$

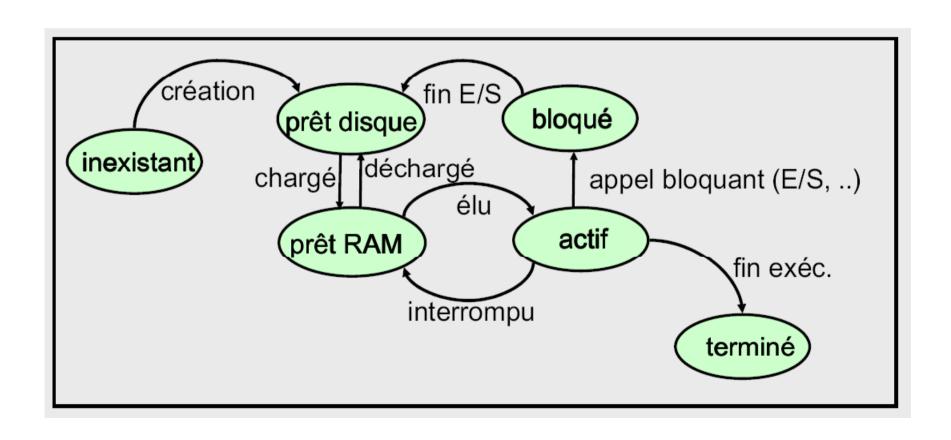

Meilleur débit = meilleur temps de réaction Meilleure efficacité = temps total d'exécution plus court Bien sûr il faut que t soit le plus petit possible.

Priorité pure

- Toutes les tâches ont une priorité, et pour une priorité on a au plus une tâche
- La préemption présente peu d'intérêt : la tâche la plus prioritaire s'exécute jusqu'à sa fin ou jusqu'au blocage.
- L'ordonnancement est donc lié aux interruptions externes

Méthode mixte : tourniquet multi-niveaux

On a quelques niveaux de priorité mais on peut avoir plusieurs tâches au même niveau de priorité.


une tâche par niveau = priorité pure

toutes les tâches au même niveau = tourniquet simple

Algorithmes d'ordonnancement à plusieurs niveaux

- Ensemble des processus prêts trop important pour tenir en mémoire centrale
- Certains sont déchargés sur disque, ce qui rend leur activation plus longue
- Le processus élu est toujours pris parmi ceux présents en mémoire centrale
- En parallèle, on utilise un deuxième algorithme d'ordonnancement pour gérer les déplacements des processus prêts entre le disque et la mémoire centrale

Algorithmes d'ordonnancement à plusieurs niveaux

Autre méthode d'ordonnancement

Systèmes à temps partagé de type Unix : l'algorithme d'ordonanncement est plus complexe :

on privilégie les tâches courtes et les tâches interactives

la priorité diminue avec le temps

la durée du quantum alloué peut elle aussi diminuer