
Master 2 MIASHS
2019-2020
Jérôme DAVID

TP2 Java EE

JSF Basis
Before starting, you can follow the tutorial:
https://javaee.github.io/tutorial/jsf-facelets003.html#GIPOB

The goal of this work is to develop a module allowing to register users and list them.
It will composed of a class representing, a user (an entity), a service class that will interact with the
database (an EJB), a web form (JSF page/Faclelet), and a backing bean (CDI Bean) that will acts as
a bridge between the view (the facelet) and the service (the EJB).

Preliminaries
Create a new maven → Web Application project called “Sempic”. Choose Group Id
“fr.uga.miashs”.
Add the JSF framework to the project: Right click on the project → Properties → Frameworks →
Add… → JavaServer Faces

1- SempicUser entity
Create a package fr.uga.miashs.sempic.entities
Inside this package, create a class SempicUser with attributes: firstname, lastname,
email, password. Make this class a Bean i.e. add an empty constructor and getter and setter
methods for each attributes. Generate the equals(...) and hashcode() methods
(source→insert code) in order that two instances with the same email are equals. Generate also the
toString() method.

2- CreateUser backing bean
Create a package fr.uga.miashs.sempic.backingbeans
Inside this package, create a class CreateUser.
Annotate the class with
@Named
@RequestScoped

@Named means that an instance of this class will be accessible within the application (in facelets or
in other beans). By default the name of the instance within facelets is the name of the class with a
lowercase letter at the beginning i.e. registerForm. You can assign another name by using
@Named(“aPrettyName”)
@RequestScoped means that the instances of this class will be stored in the request context, i.e.
it is valid only for one request.
Add the attribute current of type SempicUser, and its associated getter and setter methods.

https://javaee.github.io/tutorial/jsf-facelets003.html#GIPOB

Add the method ;
@PostConstruct
public void init() {
 current=new SempicUser();
}
This method will be called to initialize the object just after the call to the constructor.

Add a method public String create() that will display the instance current on the
console, i.e. System.out.println(current); This method will be called when the user
submit the form that will be created during the next step.

3- The facelet create-user.xhtml
Create a new facelet entitled create-user.xhtml (File → New File → Web → JSF Page) in
the directory WebPages.

Complete the page in order to have a form asking for the firstname, lastname, email and password
of the new user. This form has to be linked to the CreateUser backing bean.
To write the page, you can use the HTML 5 markups to handle password, email, placeholders (see
https://javaee.github.io/tutorial/jsf-facelets009.html#BABGECCJ).
The commandButton of this form will call the action create() of the backing bean.
Run the create-user.xhtml page (right click on it → run)
Register a new user and observe the result in the GlassFish console.

4- The model
After having created the view (the facelet) and the controller (the managed beans), we will
implement the application logic, i.e. the model. To start, we will create only a basic store that save
the registered users in main memory (in a map).

Create a package fr.uga.miashs.sempic.dao..
Inside this package, create a class SempicUserMap. This class has be a singleton EJB: Annotate
the class with @Singleton (from class javax.ejb.Singleton and not
javax.inject.Singleton). This means that only one instance of this class will be created by
the application and it will stay in memory until the server is shutdown.
This class will have an attribute called users of type (Map<String,SempicUser>) that maps
the email addresses to the instances of SempicUser.
This attribute will be initialized in he following method:
@PostConstruct
public void init() {
 users = new HashMap<>();
}

Add the methods void create(SempicUser u) throws SempicException and
List<SempicUser> findAll(). The method create adds a user in the map. It will throw
an Exception if a user with the same email already exists in the map (You have to create the class
SempicException, subclass of Exception). The method findAll returns all the users
contained in the map (new ArrayList<>(users.values())).

Now, the link between the service and the backing bean has to be done.

In the class CreateUser, add the attribute userDao of type SempicUserMap annotated with
@EJB.

https://javaee.github.io/tutorial/jsf-facelets009.html#BABGECCJ

Modify the method create() of CreateUser in order to add the current instance to the store,
i.e. call the userDao.create(...) method of SempicUserMap. Add an error message using
the following line of code (where e is the instance of the Exception):
FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage(e.getMessage()));)

5- Navigation between views

The Facelet list-users.xhtml and its backing bean
Create a backing bean ListUsers with attributes :
private DataModel<T> dataModel;
@EJB
private SempicUserMap userDao;

add the following method :
public DataModel<T> getDataModel() {
 if (dataModel == null) {
 dataModel = new ListDataModel<>(userDao.findAll());
 }
 return dataModel;
}

Create a new facelet list-users.xtml
Using the component h:dataTable, create a page that display the list of registered users (given
by the ListUsers backing bean). See Section “Using Data-Bound Table Components” of
https://javaee.github.io/tutorial/jsf-page002.html#BNARZ

Test your facelet and see the list of users.

Navigation rules
Now we want to add navigation between theses pages.
To navigate from list-users to create-user, we just have to add the following link to end of list-user:
<h:link value="Add a new user link" outcome="create-user"/>

This is called implicit navigation in JSF: the outcome attribute is the view id (i.e. the name) of the
targeted view.

From the page create-user, it is a bit more complex. The redirection to the next view depends on the
result of the action create(). If it succeed, we want to see the list of users, if not we want to stay on
the create-user view. This is an example of rule-based navigation.
To implements this, modify the method create() of CreateUser in order it returns the string
SUCCESS (if the user has been added) or FAILURE if the user already exists.
Now open the file WEB-INF/faces-config.xml (if it does not exists, add it: File → New File →
JavaServer Faces → JSF Faces Configuration).
Now add the following lines:
<navigation-rule>
 <from-view-id>/create-user.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{createUser.create()}</from-action>
 <from-outcome>SUCCESS</from-outcome>
 <to-view-id>/list-users.xhtml</to-view-id>
 </navigation-case>

https://javaee.github.io/tutorial/jsf-page002.html#BNARZ

 <navigation-case>
 <from-action>#{createUser.create()}</from-action>
 <from-outcome>FAILURE</from-outcome>
 <to-view-id>/create-user.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

Test the navigation between pages.
For more details see https://javaee.github.io/tutorial/jsf-intro006.html#BNAQL

6- Constraints
Until now, you can enter what ever you want in the form and the user will be registered, or there
will be an error.
JavaEE platform allows to add constraints in a declarative way at the entity level. These constraints
are verified at the server side. Contrary to client side validation, it will required a request to be send
but it is not possible to pass-by it by hacking javascript.

For instance add the annotation @Email (import
javax.validation.constraints.Email) to the field email of SempicUser. Then test
again your registration form and verify that now you are only allowed to put an email (if you have
use an inputText element with p:type="email", then replace it with p:type="text" in
order to deactivate client side validation).

You can also add the @NotBlank annotation to all the fields of SempicUser. This annotation
forces the field to be not null and have at least a non-white space character.
To get more information about bean validation constraints, see:
https://javaee.github.io/tutorial/bean-validation002.html#GIRCZ

https://javaee.github.io/tutorial/bean-validation002.html#GIRCZ
https://javaee.github.io/tutorial/jsf-intro006.html#BNAQL

