
Master 2 MIASHS
2019-2020
Jérôme DAVID

TP3 Java EE

JPA Basis
In this TP we will work with Java Persistence API. It is a framework that allows to to do relational-
object mapping. It can be seen as a translator that transform objects into row in database and vice-
versa.
It is based on annotations: classes, relations between classes and constraints are described directly
in the entity code thanks to annotations.

In this TP, we will first makes the SempicUser class, a JPA entity. Then we will create classes
that allows user to create groups of user and add users into theses groups.

1- Preliminaries

Edit pom.xml and set up the dependencies to look like:
<dependencies>
 <!-- for JPA -->
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>5.4.5.Final</version>
 <scope>runtime</scope>
 </dependency>

 <!-- jakartaee web API & JSF-->
 <dependency>
 <groupId>jakarta.platform</groupId>
 <artifactId>jakarta.jakartaee-web-api</artifactId>
 <version>8.0.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>jakarta.faces</groupId>
 <artifactId>jakarta.faces-api</artifactId>
 <version>2.3.2</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

Create the class ApplicationConfig in the package fr.uga.miashs.sempic.
@DataSourceDefinition(
 name = ApplicationConfig.DATA_SOURCE,
 className = "org.hsqldb.jdbcDriver",
 url = "jdbc:hsqldb:file:sempicdb",
 databaseName = "SempicDB",
 user = "sempic",

 password = "sempic"
)

@FacesConfig(version = FacesConfig.Version.JSF_2_3)
@Singleton
@Named
@Startup
public class ApplicationConfig {
 public final static String DATA_SOURCE = "java:app/sempicdb";

 @PostConstruct
 public void init() {
 }
}

In the project, declare a persistence unit and associate it to the DB:
◦ File → new file → Persistence → Persistence Unit
◦ leave values with default, we will edit it after and replace everything.
◦ Edit the persistance.xml file (within directory META-INF) and put this:

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="SempicPU" transaction-type="JTA">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <!--
provider>org.apache.openjpa.persistence.PersistenceProviderImpl</provider-->
 <jta-data-source>java:app/sempicdb</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <!-- for glassfish only -->
 <!--property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.SunOneJtaPlatform"/-->
 <property name="javax.persistence.schema-generation.database.action"
value="create"/> <!--drop-and-create-->
 <!-- for tomee only -->
 <property name="tomee.jpa.factory.lazy" value="true" />
 </properties>
 </persistence-unit>
</persistence>

2- SempicUser as JPA Entity
In order to enable object to relational mapping for a given java class, we have to do:

• Make the class a Java Bean (default no-arg constructor, private attributes, getters and
setters).

• Annotate the class with @javax.persistence.Entity (or @Entity and import
javax.persistence.*).

• Annotate the primary key field with @javax.persistence.Id (or @Id + import)

Annotate the class SempicUser with @Entity. Add an attribute (and a getter) id (type long)
and annotate it with @Id, in order to make your SempicUser class a JPA Entity. Modify the
equals and hashcode method in order to the equality between users rely on id attribute and not
email anymore.

3- Abstract JPA service
For all entities, a basic service should be able to: create, read, update, delete and list all entities that
are stored in the storage layer. JPA offers most of these services through the EntityManager API. All

the code that deals with these basic operations will be the same for all entities. Then, it is good
practice to factorise this code by introducing an abstract JPA Facade for these operations.
For this create in the package fr.uga.miashs.sempic.dao the class
AbstractJpaFacade given in annex.
In the code, you can see that the persistence context is injected through the annotation
@PersistenceContext(unitName=”SempicPU”)

4- SempicUserService
In the package fr.uga.miashs.sempic.dao, create the class SempicUserJpaFacade
that extends AbstractJpaFacade.
Make this class a Stateless Session Bean using the annotation @Stateless
Modify the code of CreateUser in order to inject and use an instance of
SempicUserJpaFacade instead of SempicUserMap.
Test your app, and verify that the user is now handled by the database:
Go to Services Tab (on the left frame of Netbeans) → Databases → JavaDB → SempicDB
(connect) → Tables → SEMPICUSER → Right Click(View Data)

5- Adding Group Entity
We want users to create and be members of groups. We have then to create an entity group.
A group is represented by an id (type long), a name, an owner (a SempicUser), a set of members (a
set of SempicUser).
There two relations between SempicUser and SempicGroup :

The relation owner from SempicGroup to SempicUser is a ManyToOne relation: A group has
only one owner but a user can be owner of several groups. In this case, in JPA, the attribute owner
of SempicGroup has to be annotated with @ManyToOne.
The relation member from Group to SempicUser is a ManyToMany relation: A group can have
several members and a user can be member of several groups. In that case, the attribute members
of SempicGroup has to annotated with @ManyToMany.
You can also add the reverse relations: in SempicUser you can add the set of group owned by the
user (attribute Set<SempicGroup> groups) and the set of group he/she is member of
(attribute Set<SempicGroup> memberOf). To that extent you have to add annotation
@OneToMany(mappedBy=”owner”) on attribute groups and
@ManyToMany(mappedBy=”members”) on memberOf. The parameter ownedBy means that
the relation is handled (owned) by the reverse side, i.e. the class Group. If you omit this, the relation
and its reverse will not be synchronized (they will be considered as different relations).

Implement the class SempicGroup, the reverse relations in SempicUser and create the
corresponding service SempicGroupJpaFacade.
Implement a view (page+backing bean) for creating a group.
The id of the owner of the group will be a parameter of the view. To add a parameter, use the
following tag:
<f:metadata>
 <f:viewParam name="userId" value="#{createGroup.ownerId}" />
</f:metadata>

SempicUser SempicGroup
<owner

<members

Extras:

In order to see what the database contains, you can create a connection within Netbeans:
Create a connection to the database (the database will be created only after having executed at least
once the project):
Go on the “service” tab (window → services). Open Databases, and right click on Databases →
new connection. Choose HSQLDB, Next, and create the connection using the following parameters:
User Name: sempic
Password: sempic
jdbc:hsqldb:file:/ CHEMIN _VERS_TOMEE/sempicdb

file:///CHEMIN
file:///CHEMIN

