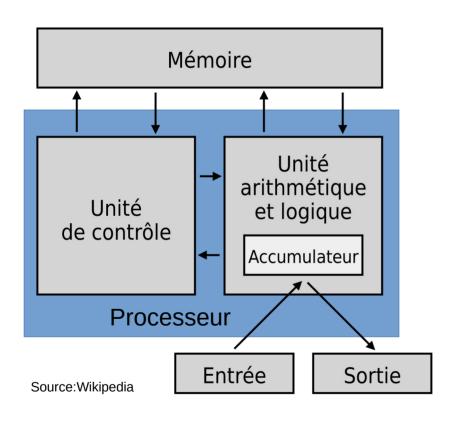
Systèmes d'exploitation des ordinateurs


Licence MIASHS

Jérôme David 2023-2024

C'est quoi un ordinateur

- Système de traitement d'information programmable
- Fonctionnement:
 - Lit séquentiellement des instructions qui lui font exécuter des opérations logiques et arithmétiques
 - Ensemble d'instructions : un programme

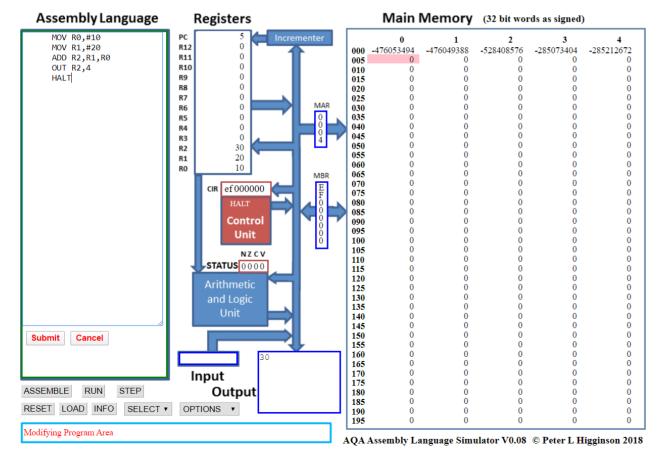
L'architecture de von Neumann

- UAL : traitement de base (opérations, lectures, écritures)
- UC : séquencement des opérations, décode les instructions
- **Mémoire** : pour stocker à la fois le programme et les données.
- Entrées/Sorties : pour communiquer avec l'extérieur (écran, clavier, imprimante, etc.)
- Les flèches représentent des circuits de communications appelées bus

Lecture: https://interstices.info/le-modele-darchitecture-de-von-neumann/

La mémoire

- Il existe plusieurs types de mémoire dans un ordinateur
 - Volatile: registres processeurs, la mémoire cache, la mémoire vive (RAM)
 - Persistante ou mémoire de masse : disques dur, SSD, clés USB, etc.
- On pourrait la représenter comme une commode où les tiroirs :
 - contiennent des données (des 0/1)
 - sont numérotés (leur adresse)



Le microprocesseur

- CPU (Central Process Unit) est un composant électronique contenant des millions de transistors
- Il est composé (pour simplifier) :
 - D'une horloge : le métronome qui donne le rythme
 - De l'unité de contrôle : le chef d'orchestre
 - De l'unité arithmétique et logique : pour faire les calculs
 - De registres : mémoires spéciales
 - Accumulateur (AC) : pour stocker les résultats de l'UAL
 - Program Counter (PC) : l'adresse de la prochaine instruction à exécuter
 - Current Instruction Register : l'instruction en cours d'exécution
 - Etc.

Simulation de fonctionnement

http://www.peterhigginson.co.uk/AQA/

Testez ce programme : MOV R0,#10

MOV R1, #20

ADD R2, R1, R0

OUT R2,4

HALT

Que fait-il?

Modifiez le pour stocker le résultat dans la mémoire juste après le programme :

 \rightarrow instruction:

STR Rx,addresse_mémoire

Les interruptions

- Mécanisme permettant d'interrompre le processeur
 - Utilisé par les périphériques pour prévenir que l'action est terminée (une lecture sur disque par exemple)
 - Utilisé pour annoncer des erreurs de matériel
 - Utilisé par les systèmes pour « partager » le processeur entre plusieurs tâches.

Langage de programmation

- Langage machine & assembleur :
 - Assembleur : c'est une version lisible du langage de la machine
 - Ne contient que les instructions du processeur
 - Très bas niveau
- Les langages haut-niveau
 - Plus proche de langue naturelle
 - Plus proche de la démarche de résolution de problème que du fonctionnement de la machine
 - C'est donc beaucoup plus facile de résoudre des problèmes complexes avec ce type de langage
 - Il existe plusieurs centaines de langages haut niveau!
- Comment passer d'un langage haut niveau vers le langage machine ?

La compilation

- Code source
 - Texte écrit dans un langage de haut niveau
 - On dit aussi « programme »
- Compilateur
 - Programme qui transforme un code source en code objet (i.e. en langage machine)
- Les étapes de compilation
 - Analyse lexicale : découper le texte en une suite de « mots » (i.e. reconnaître les mots)
 - 2) Analyse syntaxique : Vérifie que la liste de mots est grammaticalement correcte vis à vis du langage de programmation (i.e reconnaître les phrases bien formées)
 - 3) Analyse sémantique : vérification des types, des portées, construction de la table des symboles, etc.
 - 4) Génération du code machine exécutable

```
#include <stdio.h>
int main() {
    printf("Bonjour DCISS\n");
    return 0;
}

Compilation
```

Interprétation

- Interpréteur
 - Programme qui analyse un code écrit dans un langage de haut niveau et l'exécute
 - C'est quasiment pareil que la compilation sauf que la génération d'un code machine est replacé par l'exécution du code
- Langages compilés : C, C++, Java
- Langages interprétés : Pyhton, JavaScript
- Les interpréteurs sont aussi utilisés par les langages de commande
 - Des langages utiliser pour dialoguer avec l'ordinateur

Les composants d'un PC

Une alimentation électrique

 Chaque composant à des besoins de tension différente, et donc il faut plein de fils...

La carte mère

- Composant essentiel où tous les autres composants sont « branchés »
- Elle intègre des composants comme ceux pour le son, le réseau (wifi, ethernet), graphique (affichage), les ports usb, etc.

Le processeur

- On a vu, c'est lui qui calcule, lit et écrit dans la mémoire.

La mémoire vive ou RAM

 Mémoire de travail pour les applications ouvertes. Elle est rapide mais volatile, lorsque l'on éteint l'ordinateur, tout est perdu.

- La mémoire de masse : permanente pour sauvegarder les données (fichiers, etc)
 - Disque dur : mémoire magnétique.
 - SSD : mémoire « flash » (des puces électronique), beaucoup plus rapide qu'un disque dur
 - Les autres : clés usb, carte mémoire, etc.

La carte graphique

- Elle s'occupe de l'affichage et des calculs vectoriel pour les jeux/3D.
- Peut être intégrée au processeur parfois.
- Si elle est indépendant, elle possède sa propre mémoire « vive »

Les microprocesseurs PC

Ils sont caractérisés :

- Par leur fréquence d'horloge : 1Ghz = 1 milliard de cycles par seconde
- Leur nombre de coeurs : aujourd'hui il y a souvent 4 ou plus de processeurs dans une seule puce
- Leur mémoire cache : c'est une mémoire interne au processeur très rapide. Plus il en a meilleur c'est : au moins 10MB (i.e. une capacité de stockage de 10 * 8 millions de 0 ou de 1).
- Leur architecture/jeu d'instruction : aujourd'hui x64 sur PC (ARM sur smartphone)
- Leur marque et modèle

Deux marques sur le PC :

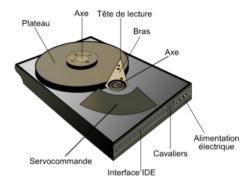
- Intel: le principal constructeur
 - Les gammes : Atom, Celeron, Pentium, Core (i3, i5, i7, i9), Xeon (serveurs)
- AMD
 - Les gammes : Athlon, Ryzen, Epyc (serveurs)
 - Fabrique aussi des processeurs graphique au de gamme

La mémoire vive (RAM)

- Mémoire de travail à accès direct et rapide
- RAM = Random Access Memory
- Caractéristiques :
 - Capacité : 8Go et 32Go
 - Type d'aujourd'hui : DDR-SDRAM (DDR4 et bientôt DDR5)
 - 2 format de barrettes:
 - DIMM (pc classiques)
 - SO-DIMM (portables)
 - On peut connecter plusieurs barrettes sur une carte mère (entre 2 et 8)
 - La latence : CAS (au alentour de 10ns)
 - La fréquence de fonctionnement : 200Mhz à 400MHz
 - Le débit (fonction de la fréquence de la mémoire et de son type) : 1600 à 3200 MT/s (nb transferts/seconde),

Barrette DDR format DIMM

Barrette DDR format SO-DIMM


Source des images : Wikipedia

Les mémoires de masse

- Mémoires non volatiles, de grande capacités
- Deux technos principales :
 - disque du magnétique
 - SSD (Solid State Drive)
- Caractéristiques
 - Capacité de stockage : aujourd'hui se compte en To
 - Temps d'accès aux informations
 - 5 millisecondes pour disque dur
 - 0,05 milliseconde pour SSD
 - Débit de transfert des informations
 - La taille / format physique : 2.5", 3.5", M.2 (SSD)
 - Coût initial d'acquisition ; coût par information ; coût d'usage
 - · Les SSD coûtent beaucoup plus cher que les disques dur
 - Durée de vie des informations stockées
 - Avantage du disque dur jusqu'à présent.

Source des images : Wikipedia

Exercice

- Lister l'ensemble des caractéristiques de votre ordinateur :
 - Processeur : marque, modèle, fréquence, nb de coeurs, taille du cache
 - Quantité de RAM, nombre de barrettes, type, fréquence ou taux de transfert
 - Mémoire de masse : SSD ou/et disque dur, taille, marque, modèle
- Constituer sur un site de matériel informatique votre PC de bureau pour moins de 1000 euros à partir de pièce détachées

Les logiciels de base sur un PC

- Le BIOS (Basic Input Output System)
 - Ensemble de programmes permettant d'effectuer des opérations de base (initialisations) à de l'allumage de l'ordinateur
 - Stocker dans une mémoire flash sur la carte mère du PC
 - Permet ensuite l'amorçage du Système d'Exploitation
- Le système d'exploitation (Operating System, OS)

Système d'exploitation

Définition :

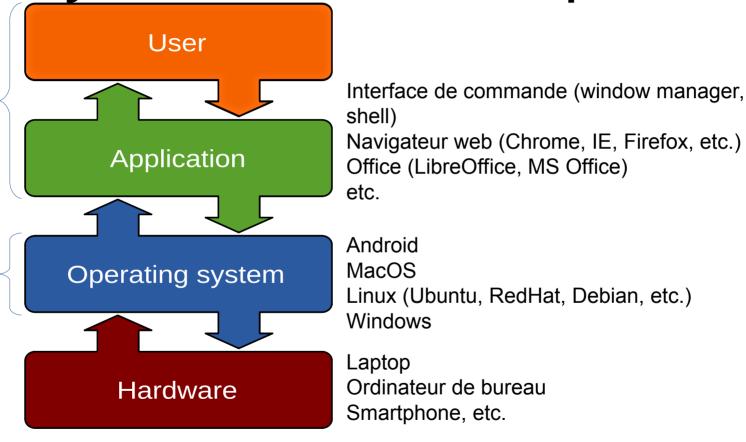
- C'est ensemble de programmes qui dirige l'utilisation des ressources d'un ordinateur par des logiciels applicatifs
- Abréviation : OS (Operating System)

Objectifs:

- Faciliter la programmation et l'utilisation de la machine en fournissant des services permettant d'abstraire le matériel
- Gérer les ressources matérielles

Les Systèmes d'exploitation

- Quelques OS actuels :
 - Windows : Microsoft, Propriétaire
 - MacOS : Apple, mélange de Propriétaire et Libre
 - GNU/Linux : Libre (GNU GPL)
 - Pour téléphones
 - IOS : Apple, Propriétaire
 - Android : Google , Libre (Apache v2 et GNU GPL v2)
- On distingue souvent deux familles :
 - Les UNIX : MacOS, GNU/Linux, etc.
 - Les windows


Système informatique

Mode
utilisateur

→ accès à une
abstraction du
matériel

Mode noyau

→ accès à tout le matériel

Source: https://fr.wikipedia.org/wiki/Syst%C3%A8me_d%27exploitation#/media/File:Operating_system_placement-fr.svg

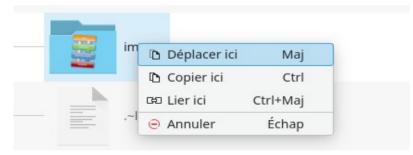
Fonctionnalités

- Gestion des périphériques (ou des entrées/sorties)
 - Abstraire la communication vers les périphériques (écran, claviers, webcam, imprimante, réseau) via des pilotes
- Gestion des données
 - Fournir une vue d'accès aux données sous forme d'un système de fichiers
 - Permettre de contrôler l'accès aux fichiers
- Gestion des ressources
 - Gestion et partage du CPU via une stratégie d'ordonnancement (multiplexage dans le temps)
 - Gestion et partage de la mémoire vive (multiplexage dans l'espace)

Fonctionnalités (suite)

- Gestion de l'exécution des applications (processus)
 - Affecter et partager les ressources entre différentes applications qui s'exécutent
 - Gérer le cycle de vie des application (démarrage, fin, pause, etc.)
- Gestion des utilisateurs
- Fournir une interface de commande et de programmation
 - Permettre à l'utilisateur de contrôler le système via une interface graphique ou en ligne de commande
 - Faciliter la tâche du programmeur en offrant une API (interface de programmation abstraire)

Utilisations


- L'interaction avec l'OS se fait via :
 - Son interface de programmation
 - L'ensemble des appel systèmes (fonctions) que le programmeur peut utiliser
 - c.f. POSIX la norme d'interface de programmation des systèmes UNIX
- L'interpréteur de commande (shell)
 - Ne fait pas partie de l'OS mais permet à l'utilisateur de dialoguer avec l'OS (faire des appel systèmes) en mode "texte"
- L'interface graphique
 - Idem que l'interpréteur de commande mais plus intuitif car en mode graphique (souris)

Exemples d'utilisation d'interfaces

Avec l'interpréteur de commandes

cp chose.txt truc.txt

Avec l'interface graphique

En langage C

```
#include <stdio.h>
main() {
   FILE *fp1, *fp2;
   char ch;
   // ouvrir le fichier en lecture
   fp1 = fopen("file1.txt", "r");
   // ouvrir le fichier en écriture
   fp2 = fopen("file2.txt", "w");
   // Lire le contenu du fichier
   while ((ch = getc(fp1)) != EOF)
       putc(ch, fp2);
   fclose(fp1);
   fclose(fp2);
   getch();
```

Objectifs et contenu du cours

- Manipuler un OS en ligne de commande
 - Cours sur les commandes Unix et shell Bash
- Appréhender quelques mécanismes de base des OS
 - La notion de processus
 - Mécanismes d'exécution : multiprogrammation, ordonnancement
 - Les problèmes de concurrence d'accès et synchronisation
 - L'exclusion mutuelle
 - La programmation multithread